+91-9811854308

www.ignouassignmentguru.com

No. of Printed Pages : 4

BCS-012

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2012

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

09107

Maximum Marks : 100

Note: Question no. one is compulsory. Attempt any three questions from four.

- 1. (a) For what value of 'k' the points (-k+1, 2k), 5 (k, 2-2k) and (-4-k, 6-2k) are collinear.
 - (b) Solve the following system of equations by using Matrix Inverse Method.

$$3x + 4y + 7z = 14$$
$$2x - y + 3z = 4$$
$$2x + 2y - 3z = 0$$

) Use principle of Mathematical Induction to 5 prove that :

 $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ NOUASSIGNMENTOU

(d) How many terms of G.P $\sqrt{3}$, 3, 3 $\sqrt{3}$ _____

Add upto $39 + 13\sqrt{3}$

BCS-012

P.T.O.

(e) If
$$y = ae^{mx} + be^{-mx}$$
 Prove that $\frac{d^2 y}{dx^2} = m^2 y$ 5

(f) Evaluate Integral
$$\int \frac{x}{(x+1)(2x-1)} dx$$
. 5

$$\begin{pmatrix} \vec{a} - \vec{b} \\ \vec{a} - \vec{b} \end{pmatrix}$$
 where $\vec{a} = -\vec{i} + \vec{j} + \vec{k}$

and
$$\vec{b}=2\hat{i}+\hat{j}-3\hat{k}$$

5

21 J

(h) Find the Angle between the lines

 $\vec{r}=2\hat{i}+3\hat{j}-4\hat{k}+t(\hat{i}-2\hat{j}+2\hat{k})$

$$\vec{r} = 3\hat{i} - 5\hat{k} + s\left(3\hat{i} - 2\hat{j} + 6\hat{k}\right)$$

2. (a) Solve the following system of linear
equations using Cramer's Rule
$$\rightarrow$$

 $x + 2y + 3z = 6$
 $2x + 4y + z = 7$
 $3x + 2y + 9z = 14$
(b) Construct a 2×2 matrix A = [aij]_{2×2} where 5
each element is given by aij = $\frac{1}{2}(i+2j)^2$

BCS-012

(c) Reduce the Matrix to Normal form by **10** elementary operations.

$$\mathbf{A} = \begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

3.

(a) Find the sum to Infinite Number of terms of 5 A.G.P.

- (b) If 1, ω , ω^2 are Cube Roots of unity show that $(1 + \omega)^2 - (1 + \omega)^3 + \omega^2 = 0.$
- (c) If α , β are roots of equation $2x^2 3x 5 = 0$ form a Quadratic equation whose roots are α^2 , β^2 .

(d) Solve the inequality $\frac{3}{5}(x-2) \le \frac{5}{3}(2-x)$ 5

and graph the solution set.

4. (a) Evaluate
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9}$$
 5
(b) A spherical ballon is being Inflated at the 5
rate of 900 cm³/sec. How fast is the Radius

of the ballon Increasing when the Radius is 15 cm.

BCS-012

P.T.O.

5

(c) Evaluate Integral $\int e^x \left[\frac{1}{x} - \frac{1}{x^2}\right] dx$ 5

(d) Find the area bounded by the curves $x^2 = y$ 5 and y = x.

5. (a) Find a unit vector perpendicular to both the 5 vectors $\vec{a} = 4\hat{i} + \hat{i} + 3\hat{k}$

$$\overrightarrow{b} = -2\hat{i} + \hat{j} - 2\hat{k}$$

(b) Find the shortest distance between the 5 lines $\vec{r} = (3\hat{i}+4\hat{j}-2\hat{k}) + t(-\hat{i}+2\hat{j}+\hat{k})$ and $\vec{r} = (\hat{i}-7\hat{j}+2\hat{k}) + t(\hat{i}+3\hat{j}-2\hat{k})$

(c) Suriti wants to Invest at most ₹ 12000 in saving certificates and National Saving Bonds. She has to Invest at least ₹ 2000 in Saving certificates and at least ₹ 4000 in National Saving Bonds. If Rate of Interest on Saving certificates is 8% per annum and rate of interest on national saving bond is 10% per annum. How much money should she invest to earn maximum yearly income ? Find also the maximum yearly

BCS-012

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2012

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

07039

Maximum Marks: 100

Note : *Question no.* **1** *is compulsory. Attempt any three questions from the rest.*

1. (a) Evaluate : $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$

(b) For all $n \ge 1$, prove that

$$1^{2}+2^{2}+3^{2}+...+n^{2} = \frac{n(n+1)(2n+1)}{2}$$

(c) If the points (2, -3), $(\lambda, -1)$ and (0, 4) are collinear, find the value of λ .

(d) The sum of n terms of two different 5 arithmetic progressions are in the ratio (3n+8): (7n+15). Find the ratio of their 12^{th} term.

BCS-012

P.T.O.

(e) Find
$$\frac{dy}{dx}$$
 if $y = \log \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right]$ 5

(f) Evaluate :
$$\int \frac{dx}{x^2 - 6x + 13}$$
 5

(g) Find the unit vector in the direction of the
$$\vec{5}$$

sum of the vectors $\vec{a} = 2i + 2j - 5k$ and

 $\overrightarrow{\mathbf{b}} = 2i + j + 3k$.

(h) Find the angle between the vectors with direction ratios proportional to (4, -3, 5) and (3, 4, 5).

5

- 2. (a) Solve the following system of linear 5 equations using Cramer's rule. x + 2y - z = -1, 3x + 8y + 2z = 28, 4x + 9y + z = 14.
 - (b) Construct a (2×3) matrix whose elements 5

+9
$$a_{ij}$$
 is given by $a_{ij} = \frac{(i+j)^2}{2}$ 54308
(c) Find the inverse of $A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ and 10

verify that $A^{-1}A = I$.

BCS-012

3. Find the sum to n terms of the series (a)

$$1 + \frac{4}{5} + \frac{4}{5^2} + \frac{4}{5^3} + \dots$$

If 1, ω , ω^2 are three cube roots of unity. (b) 5 Show that :

$$(2-\omega)(2-\omega^2)(2-\omega^{10})(2-\omega^{11}) = 49$$

- (c) If α and β are the roots of the equation 5 $ax^2 + bx + c = 0$, $a \neq 0$ find the value of $\alpha^6 + \beta^6$.
- Solve the inequality -3 < 4 7x < 18 and (d) graph the solution set.

4. (a) Evaluate :
$$\lim_{x \to 0} \frac{\sqrt{1+x-1}}{x}$$
 5

(b) A rock is thrown into a lake producing a 5 circular ripple. The radius of the ripple is increasing at the rate of 3 m/s. How fast is the area inside the ripple increasing when the radius is 10 m.

$\frac{dx}{dx}$ Evaluate : 🥤 าentguru.อื่อ

(d) Find the area enclosed by the circle 5 $x^2 + y^2 = a^2$.

BCS-012

5

5. (a) If
$$\overrightarrow{a} = 5i - j - 3k$$
 and $\overrightarrow{b} = i + 3j - 5k$. 5

Show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

- (b) Find the angle between the vectors 5 5i+3j+4k and 6i-8j-k.
- (c) Solve the following LPP graphically : 10 Maximize : z = 5x + 3y

Subject to : $3x + 5y \le 15$

 $5x + 2y \le 10$

$x, y \ge 0$

Assignment GURU +91-9811854308

www.ignouassignmentguru.com

No. of Printed Pages : 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (Revised)

Term-End Examination

June, 2013

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

54

53

C

Maximum Marks : 100

Note : Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Evaluate
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix}$$
:
(b) Show that the points (a, b+c), (b, c+a) and 5
(c, a+b) are collinear.

(c) For every positive integer n, prove that $5^{n-3^{n}}$ is divisible by 4.

The sum of first three terms of a G.P. is $\frac{13}{12}$

and their product is -1. Find the common www.gratio and the terms.

(e) Find
$$\frac{dy}{dx}$$
 if $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ 5

BCS-012

(d

P.T.O.

(f) Evaluate
$$\int \frac{\mathrm{d}x}{3x^2 + 13x - 10}$$
 5

- (g) Write the direction ratio's of the vector 5 $\overline{a} = i + j - 2k$ and hence calculate its direction cosines.
- (h) Find a vector of magnitude 9, which is 5 perpendicular to both the vectors 4i j + 3k and -2i + j 2k.
- 2. (a) Solve the following system of linear equations using Cramer's Rule x + y = 0, y+z=1, z+x=3.
 - (b) Find x, y and z so that A = B, where

$$\mathbf{A} = \begin{bmatrix} x-2 & 3 & 2z \\ 18z & y+2 & 6z \end{bmatrix}, \mathbf{B} = \begin{bmatrix} y & z & 6 \\ 6y & x & 2y \end{bmatrix}$$

5

5

5

(c) Reduce the matrix $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 3 & 2 \\ 1 & 3 & 4 & 3 \end{bmatrix}$ to its 10 Hormal form and hence determine its rank.

WV3. W(a) Find the sum ton terms of the A.G.P. U. SOM $1+3x+5x^2+7x^3+...; x \neq 1.$

(b) Use De Moivre's theorem to find $(\sqrt{3}+i)^3$

BCS-012

(c) If α , β are the roots of $x^2 - 4x + 5 = 0$ form 5 an equation whose roots are $\alpha^2 + 2$, $\beta^2 + 2$.

(d) Solve the inequality
$$-2 < \frac{1}{5} (4-3x) \le 8$$
 and 5

graph the solution set.

4. (a) Evaluate
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{x}$$
. 5

(b) If a mothball evaporates at a rate proportional to its surface area $4\pi r^2$, show that its radius decreases at a constant rate.

(c) Evaluate :
$$\int \frac{\mathrm{d}x}{4+5\sin^2 x}$$
 5

(d) Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

5. (a) Find a unit vector perpendicular to each of 5
the vectors
$$\overline{a}+\overline{b}$$
 and $\overline{a}-\overline{b}$ where
NWW. $[Ga] = i+j+k$, $\overline{b} = i+2j+3k$. Entropuru.com

(b) Find the projection of the vector 7i + j - 4k 5 on 2i + 6j + 3k.

BCS-012

P.T.O.

5

- (c)
- Solve the following LPP by graphical **10** method.

Minimize : z = 20x + 10ySubject to : $x + 2y \le 40$ $3x + y \ge 30$ $4x + 3y \ge 60$ and $x, y \ge 0$

BCS-012

08415		BACHELOR OF COMPUTER APPLICATIONS (Revised) Term-End Examination December, 2013
BCS-012 : BASIC MATHEMATICS Time : 3 hours Maximum Marks : 100		
Note: Question no. 1 is compulsory. Attempt any three questions from the remaining questions.		
1.	(a)	Show that $\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \begin{vmatrix} a & b & c \\ c & a & b \end{vmatrix}$ 5
-	(b) (c)	If $A = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ check 5 whether $AB = BA$. Use the principle of mathematical induction 5
////	(d)	to show that $1+3+5+\dots+(2n-1)=n^2$ for each $n \in \mathbb{N}$. If α and β are roots of $x^2-3ax+a^2=0$ and 5 $\alpha^2+\beta^2=\frac{7}{9}$, find the value of <i>a</i> .

BCS-012

P.T.O.

(e) If
$$y = ax + \frac{b}{x}$$
, show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$ 5

(f) Evaluate the integral
$$\int e^x (e^x + 7)^5 dx$$
. 5

(g) If
$$\vec{a}=5\hat{i}-\hat{j}-3\hat{k}$$
 and $\vec{b}=\hat{i}-3\hat{j}-5\hat{k}$, show 5

that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular to each other.

(h) Find the angle between the lines 5 $\frac{x-5}{2} = \frac{y-5}{1} = \frac{z+1}{-1}$ and $\frac{x}{3} = \frac{y-1}{2} = \frac{z+5}{3}$

2. (a) If
$$A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, show that $A^2 = A^{-1}$.

(b) Show that $A = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$ is row equivalent 5

(c) to I₃, where I₃ is identity matrix of order 3. If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, show that 10 $A^2 - 4A + 7I_2 = 0_{2x2}$. Use this result to find A^5 . Where 0_{2x2} is null matrix of order 2x2.

3. (a) Solve the equation $6x^3 - 11x^2 - 3x + 2 = 0$, 5 given that the roots are in H.P.

BCS-012

(b) If
$$x+iy=\sqrt{\frac{a+ib}{c+id}}$$
, show that 5
 $(x^2+y^2)^2 = \frac{a^2+b^2}{c^2+d^2}$.
(c) Solve the inequality $\left|\frac{3x-1}{2}\right| \le 5$. 5
(d) If α and β be the roots of the equation 5
 $3x^2-4x+1=0$, find the equation whose roots are α^2/β and β^2/α .
(a) Determine the intervals in which the 5
function $f(x) = \frac{1+x+x^2}{1-x+x^2}$, $x \in \mathbb{R}$ is increasing or decreasing.
(b) Show that $f(x) = x^2 ln(\frac{1}{x})$, $x > 0$ has a local 5
maximum at $x = \frac{1}{\sqrt{e}}$.
(c) Evaluate $\int (x+1)e^x (xe^x+5)^4 dx$. 5
(d) Find the area bounded by $y = \sqrt{x}$ and $y = x$.

5. (a) Find the vector and Cartesian equation of 5 the line through the points
$$(3, 0, -1)$$
 and $(5, 2, 3)$.

(b) Show that $\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$ 5

4.

(c) Two tailors A and B, earn ₹ 150 and ₹ 200 per day respectively. A can stich 6 shirts and 4 pants while B can stich 10 shirts and 4 pants per day. How many days should each work to stich (at least) 60 shirts and 32 pants at least labour cost ? Also calculate the least cost.

GURU +91-9811854308

signment

www.ignouassignmentguru.com

BCS-012

9

48

20

BACHELOR OF COMPUTER APPLICATIONS (Revised)

Term-End Examination

June, 2014

BCS-012 : BASIC MATHEMATICS

Time : 3 hours Maximum Marks : 100 Question No. 1 is compulsory. Attempt any three Note : questions from the remaining four questions. Show that the points (a, b+c), (b, c+a) and 1. (a) 5 (c, a+b) are collinear. If $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$, find $4A - A^2$. (b) Use the principle of mathematical induction (c) 5 to show that : $1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$ (d)Find the smallest positive integer *n* for which 5 www.ign(ɬɬ)assignmentguru.co A positive number exceeds its square root (e) 5 by 30. Find the number.

BCS-012

P.T.O.

(f) If
$$y = \frac{\ln x}{x^2}$$
, find $\frac{dy}{dx}$. 5

(g) Show that for any vector
$$\vec{a}$$
, $\vec{5}$
 $\hat{a} \times (\vec{a} \times i) + \hat{j} \times (\vec{a} \times j) + \hat{k} \times (\vec{a} \times k) = 2 \vec{a}$

(h) Find an equation of the line through 5
(1, 0, -4) and parallel to the line
$$x+1$$
 $y+2$ $z-2$

2 .

4

2. (a) Find inverse of the matrix 5 5 1 1 2 3 A = 2 1 ó 5 3 8 Reduce the matrix A =1 (b) 0 1 to 5 41) 1 0 normal form by elementary operations.

(c) Solve the system of linear equations 10 2x - y + z = 5

www.igneyuassignmentguru.com

4x + 5y - 5z = 9

3

by matrix method.

BCS-012

- 3. (a) Use DeMoivre's theorem to put $(\sqrt{3} + i)^3$ in 5 the form a + bi.
 - (b) Find the sum to n terms of the series 5 $0.7 + 0.77 + 0.777 + \dots + upto n$ terms.
 - (c) If one root of the quadratic equation 5 $ax^2+bx+c=0$ is square of the other root, show that $b^3+a^2c+ac^2=3abc$.
 - (d) The cost of manufacturing *x* mobile sets by Josh Mobiles is given by C = 3000 + 200x and the revenue from selling *x* mobiles is given by 300x. How many mobiles must be produced to get a profit of ₹7,03,000 or more.

4. (a) If
$$y = ae^{mx} + be^{-mx}$$
 and $\frac{d^2y}{dx^2} = ky$, find the 5 value of k in terms of m.

(b) A man 180 cm tall walks at a rate of 2 m/s 3
 away from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light ?

(c) Evaluate the integral $\int \frac{x}{(x+1)(2x-1)} dx$. 5 (d) Find length of the curve $y = 2x^{3/2}$ from 5 (1, 2) to (4, 16).

BCS-012

P.T.O.

5. (a) For any two vectors \vec{a} and \vec{b} , prove that 5 $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|.$

(b) Find the shortest distance between $\vec{r_1}$ and $\vec{r_2}$ given below :

$$\vec{r_1} = (1+\lambda)\hat{i} + (2-\lambda)\hat{j} + (1+\lambda)\hat{k}$$

$$\vec{r_2} = 2 (1+\mu) \hat{i} + (1-\mu) \hat{j} + (-1+2\mu) \hat{k}.$$

10

(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market, buttons are available in boxes and cards. A box contains 6 large and 2 small buttons and a card contains 2 large and 4 small buttons. If the cost of a box is ₹ 3 and that of card is ₹ 2, find how many boxes and cards should he buy so as to minimize the expenditure ?

+91-9811854308

www.ignouassignmentguru.com

No. of Printed Pages: 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (Revised) Term-End Examination

December, 2014

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

Note : Question number 1 is **compulsory**. Attempt any **three** questions from the rest.

1. (a) Show that

$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz (x - y) (y - z) (z - x) = 5$$
(b) Let $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$ and $f(x) = x^2 - 3x + 2$.
Show that $f(A) = O_{2 \times 2}$. Use this result to
find A^4 . 5
(c) Use the principle of mathematical

(c) Use the principle of mathematical induction to show that

$$\sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1, \ \forall n \in \mathbb{N}.$$
 5

BCS-012

1

P.T.O.

If the sum of p terms of an A.P. is $4p^2 + 3p$, (d) find its nth term.

(e) If
$$y = ln \left[e^x \left(\frac{x-1}{x+1} \right)^{1/2} \right]$$
, find $\frac{dy}{dx}$. 5

3]

$$x + y = 0$$
, $y + z = 1$, $z + x = 3$

, find A^{-1} . If A =(b) Show that the points (2, 5), (4, 3) and (5, 2) (c) are collinear.

(**d**) Find the rank of the matrix 2.

BCS-012

2.

- If 7 times the 7th term of an A.P. is equal to (a) 3. 11 times the 11th term of the A.P., find its 18th term.
 - Find the sum to n terms of the series : (b)

$$9 + 99 + 999 + 9999 + \dots$$

- If $x + iy = \sqrt{\frac{a + ib}{c + id}}$, then show that (c) $x^{2} + y^{2} = \sqrt{\frac{a^{2} + b^{2}}{c^{2} + d^{2}}}$.
- If α and β are roots of $2x^2 3x + 5 = 0$, find (**d**) the equation whose roots are $\alpha + (1/\beta)$ and $\beta + (1/\alpha).$ nent

 $\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$

Find the local extrema of $f(x) = \frac{3}{4}x^4 - 8x^3 + \frac{45}{2}x^2 + 105$ 5 (b)

(c). Evaluate: www.ignouassignmentguru.com $\int \frac{x^2 + 1}{x (x^2 - 1)} dx$

5

 $\mathbf{5}$

5

(d) Find the length of the curve $y = \frac{2}{3}x^{3/2}$ from (0, 0) to (4, 16/3).

5. (a) Find the area of \triangle ABC with vertices A(1, 3, 2), B(2, -1, 1) and C(-1, 2, 3). 5

(b) Find the angle between the lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{-1} \text{ and } \frac{x}{3} = \frac{y}{-1} = \frac{z-2}{3}.$$
 5

(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market two kinds of boxes are available. Box A contains 6 large and 2 small buttons and costs ₹ 3, box B contains 2 large and 4 small buttons and costs ₹ 2. Find out how many boxes of each type should be purchased to minimize the expenditure.

10

5

+91-9811854308

www.ignouassignmentguru.com

No. of Printed Pages: 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

08313

June, 2015

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks: 100

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1+c \end{vmatrix}$ = abc + bc + ca + ab. 5

+(b) If
$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
, find A³.54305

(c) Use the principle of mathematical

induction to show that

$$2 + 2^{2} + \dots + 2^{n} = 2^{n+1} - 2. \forall n \in \mathbb{N}$$
 5

BCS-012

P.T.O.

Find the 18th term of a G.P. whose 5th (d) term is 1 and common ratio is 2/3. 5 If $(a - ib) (x + iy) = (a^2 + b^2) i$ and $a + ib \neq 0$, (e) find x and y. 5 (**f**) Find two numbers whose sum is 54 and product is 629. 5 If $y = ae^{mx} + be^{-mx}$, show that $\frac{d^2y}{dx^2} = m^2y$. (**g**) 5 (h) Find the equation of the straight line through (-2, 0, 3) and (3, 5, -2). 5 (a) If $A = \begin{bmatrix} 5 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, find A^{-1} . (b) Solve the system of equations x + y + z = 5, y + z = 2, x + z = 3 by using Cramer's rule. 5 (c)Find the area of \triangle ABC whose vertices are A (1, 3), B (2, 2) and C (0, 1). 5 V. ignouass $\begin{bmatrix} 5gn3n8\\ 0 & 1 & 1\\ 1 & -1 & 0 \end{bmatrix}$ to normal

form by elementary operations.

BCS-012

2.

- 3. (a) Find the sum to n terms of the series 0.7 + 0.77 + 0.777 + ...
 - (b) Find three terms in G.P. such that their sum is 31 and the sum of their squares is 651.
 - (c) If α and β are roots of $x^2 4x + 2 = 0$, find the equation whose roots are $\alpha^2 + 1$ and $\beta^2 + 1$.
 - (d) Solve the inequality

$$\mathbf{x}^2 - 4\mathbf{x} - 21 \le 0.$$

4. (a) Find the value of constant k so that

$$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}^2 - 25}{\mathbf{x} - 5} & \text{if } \mathbf{x} \neq 5\\ \mathbf{k} & \text{if } \mathbf{x} = 5 \end{cases}$$

is continuous at x = 5.

(b) If
$$y = \frac{1 - e^x}{e^{2x}}$$
, find $\frac{dy}{dx}$

(c) If a mothball evaporates at a rate proportional to its surface area $4\pi r^2$, show that its radius decreases at a constant rate. 5

www. (d) i Evaluate: assignment guru.com

$$\int_{0}^{2} \frac{x^{2}}{(x+2)^{3}} dx \qquad 5$$

3

BCS-012

P.T.O.

5

5

5

5

Ť

- 5. (a) Show that the three points with position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}$, $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $7\overrightarrow{a} - \overrightarrow{c}$ are collinear.
 - (b) Find the direction cosines of the line passing through (1, 2, 3) and (-1, 1, 0).
 - (c) Two electricians, A and B, charge ₹ 400 and ₹ 500 per day respectively. A can service 6 ACs and 4 coolers per day while B can service 10 ACs and 4 coolers per day. For how many days must each be employed so as to service at least 60 ACs and at least 32 coolers at minimum labour cost ? Also calculate the least cost.

+91-9811854308

www.ignouassignmentguru.com

5

5

No. of Printed Pages : 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

 $a = 1 \neq December, 2015$

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. Attempt any *eight* parts from the following :

(a) Show that

$$\begin{vmatrix} 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & 0 \end{vmatrix} = 0$$
Where ω is a complex cube root of unity. 4508
(b) If $A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$, signent guru.com

show that $A^2 - 4A + 5I_2 = 0$ Also, find A^4 .

-5

BCS-012

P.T.O.

- (c) Show that 133 divides $11^{n+2} + 12^{2n+1}$ for every natural number n. 5
- (d) If pth term of an A.P is q and qth term of the A.P. is p, find its rth term.

5

5

- (e) If 1, ω , ω^2 are cube roots of unity, show that $(2-\omega)(2-\omega^2)(2-\omega^{19})(2-\omega^{23}) = 49.$ 5
- (f) If α , β are roots of $x^2 3ax + a^2 = 0$, find the value(s) of a if $\alpha^2 + \beta^2 = \frac{7}{4}$.

(g) If
$$y = ln\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$$
, find $\frac{dy}{dx}$.

(h) Evaluate :

$$\int x^{2} \sqrt{5x-3} \, dx$$
2. (a) If A = $\begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 3 \\ 3 & 0 & -1 \end{bmatrix}$, show that
A (adj.A) = |A| I₃.

www.ignouas
$$\begin{bmatrix} 2 & -1 & -7 \\ 3 & 5 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$
, show that A is row
equivalent to I₃.

(c) If
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
,
 $B = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}$, show that
 $AB = 6 I_3$. Use it to solve the system of
linear equations $x - y = 3$, $2x + 3y + 4z = 17$,
 $y + 2z = 7$.
10
3. (a) Find the sum of all the integers between
100 and 1000 that are divisible by 9.
(b) Use De Moivre's theorem to find $(\sqrt{3} + i)^3$.
5
(c) Solve the equation
 $x^3 - 13x^2 + 15x + 189 = 0$,
given that one of the roots exceeds the other
by 2.
5
(d) Solve the inequality
 $4 - \frac{2}{|x-1|} \ge 5$
18554308
and graph its solution.
5
4. (a) Determine the values of x for which
 $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is
increasing and for which it is decreasing.
5

BCS-012

3

P.T.O.

(b) Find the points of local maxima and local minima of

 $f(x) = x^3 - 6x^2 + 9x + 2014, x \in \mathbf{R}.$

(c) Evaluate :

$$\int \frac{\mathrm{dx}}{\left(\mathrm{e}^{\mathrm{x}}-1\right)^{2}}$$

- (d) Using integration, find length of the curve y = 3 x from (-1, 4) to (3, 0).
- 5. (a) Show that

$$[\overrightarrow{a} - \overrightarrow{b} \quad \overrightarrow{b} - \overrightarrow{c} \quad \overrightarrow{c} - \overrightarrow{a}] = 0.$$

(b) Show that the lines

$$\frac{x-5}{4} = \frac{y-7}{-4} = \frac{z-3}{-5} \text{ and } \frac{x-8}{4} = \frac{y-4}{-4} = \frac{z-5}{4}$$

intersect. 5

(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market, buttons are available in two boxes or cards. A box contains 6 large and 2 small buttons and a card contains 2 large and 4 small buttons. If the cost of a box is ₹ 3 and cost of a card is ₹ 2, find how many boxes and cards should be purchased so as to minimize the expenditure.

4

No. of Printed Pages : 5

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

June, 2016

04336

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks: 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. Attempt all parts :

(a) Show that

 $\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a - b)(b - c)(c - a). 5$

 $WWW^{(b)} G^{If} A = \begin{pmatrix} 1 & -2 \\ 2 & 5 & 1 \end{pmatrix}, B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix} and U.CON$

 $(A + B)^2 = A^2 + B^2$, find a and b.

BCS-012

P.T.O.

- (c) Use the principle of mathematical induction to show that $2 + 2^2 + ... + 2^n = 2^{n+1} - 2$ for each natural number n.
- (d) Find the 10th term of the harmonic progression $\frac{1}{7}$, $\frac{1}{15}$, $\frac{1}{23}$, $\frac{1}{31}$, ... 5

5

5

5

(e) If Z is a complex number such that

$$|Z-2i| = |Z+2i|$$
, show that $Im(Z) = 0.$ 5

(f) Find the quadratic equation whose roots are $2 - \sqrt{3}$, $2 + \sqrt{3}$.

(g) If
$$y = ln \left[e^{x} \left(\frac{x-2}{x+2} \right)^{3/4} \right]$$
, find $\frac{dy}{dx}$.

(h) Evaluate :

 $\int \frac{dx}{\sqrt{x + x}} + 91 - 9811854308$ w². (a) iff A = $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, show that guru.com

 $A^2 - 4A - 5I_3 = 0$. Hence obtain A^{-1} and A^3 . 10

BCS-012

(b) If $A = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$, show that A is

row equivalent to I_3 .

(c) Use Cramer's rule to solve the following system of equations :

- x + 2y + 2z = 33x 2y + z = 4x + y + z = 2
- 3. (a) Find the sum of an infinite G.P. whose first term is 28 and fourth term is $\frac{4}{49}$.
 - (b) If x = a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$ (where ω is a cube root of unity and $\omega \neq 1$), show that $xyz = a^3 + b^3$.
 - (c) If the roots of $ax^3 + bx^2 + cx + d = 0$ are in A.P., show that $2b^3 - 9abc + 27a^2d = 0.$

 $\frac{(d)}{5} = \frac{1}{5} = \frac{$

BCS-012

3

P.T.O.

5.

5

5

4. (a) Determine the values of x for which $f(x) = 5x^{3/2} - 3x^{5/2}, x > 0$ is (i) increasing

- (ii) decreasing.
- (b) Find the points of local extrema of

$$f(x) = \frac{3}{4}x^4 - 8x^3 + \frac{45}{2}x^2 + 2015.$$
 5

5

5

(c) Evaluate :

$$\int \frac{x^2}{(x+2)^3} \, \mathrm{d}x$$

- (d) Find the area bounded by the curves $y = x^2$ and $y^2 = x$. 5
- 5. (a) For any vectors show that 554308

(b) Find the shortest distance between QUIU CON $\vec{r} = (1 + \lambda)\hat{i} + (2 - \lambda)\hat{j} + (1 + \lambda)\hat{k}$ and $\vec{r} = 2(1 + \mu)\hat{i} + (1 - \mu)\hat{j} + (-1 + 2\mu)\hat{k}$. 5

BCS-012

A man wishes to invest at most ₹ 12,000 in Bond A and Bond B. He must invest at least ₹ 2,000 in Bond A and at least ₹ 4,000 in Bond B. If Bond A gives return of 8% and Bond B that of 10%, find how much money be invested in the two bonds to maximize the return.

Assignment GURU +91-9811854308 www.ignouassignmentguru.com

BCS-012

(c)

8,000

No. of Printed Pages: 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

December, 2016

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

08955

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining four questions.

1. (a) Evaluate the determinant

of unity.

(b) Using determinant, find the area of the triangle whose vertices are (-3, 5), (3, -6) and (7, 2). 5

(c) Use the principle of mathematical induction to show that $2 + 2^2 + ... + 2^n = 2^{n+1} - 2$ for every natural number n. 5

> (d) Find the sum of all integers between 100 and 1000 which are divisible by 9. 5

BCS-012

P.T.O.

(e) Check the continuity of the function f(x) at x = 0:

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{|\mathbf{x}|}{\mathbf{x}}, & \mathbf{x} \neq \mathbf{0} \\ 0, & \mathbf{x} = \mathbf{0} \end{cases}$$

(f) If
$$y = \frac{\ln x}{x}$$
, show that $\frac{d^2 y}{dx^2} = \frac{2\ln x - 3}{x^3}$.

5

5

- (g) If the mid-points of the consecutive sides of a quadrilateral are joined, then show (by using vectors) that they form a parallelogram.
- (h) Find the scalar component of projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$ on the vector $\vec{b} = 2\hat{i} - 2\hat{j} - \hat{k}$.

2. (a) Solve the following system of linear equations using Cramer's rule : 5 x + 2y - z = -1, 3x + 8y + 2z = 28, 4x + 9y + z = 14. (b) Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ and $f(x) = x^2 - 4x + 7$.

Show that $f(A) = O_{2 \times 2}$. Hence find A^5 . 10 (c) Determine the rank of the matrix OUU CON $A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \\ 5 & 3 & 14 & 4 \end{bmatrix}$. 5

BCS-012

(a) The common ratio of a G.P. is -4/5 and the sum to infinity is 80/9. Find the first term of the G.P.

(b) If
$$\left(\frac{1-i}{1+i}\right)^{100} = a + ib$$
, then show that $a = 1$,
 $b = 0$.

- (c) Solve the equation $8x^3 14x^2 + 7x 1 = 0$, the roots being in G.P.
- (d) Find the solution set for the inequality $15x^2 + 4x 4 \ge 0$.
- 4. (a) If a mothball evaporates at a rate proportional to its surface area $4\pi r^2$, show that its radius decreases at a constant rate.
 - (b) Find the absolute maximum and minimum of the function $f(x) = \frac{x^3}{x+2}$ on the interval [-1, 1].

(c) Evaluate the integral 85430 $I = \int \frac{dx}{1 + 3e^{x} + 2e^{2x}}.$ 5

iouassigñmentguru.com

(d) Find the length of the curve y = 2x + 3 from (1, 5) to (2, 7).

BCS-012

P.T.O.

5

5

5

5

 $\mathbf{5}$

5. (a) Find the value of λ for which the vectors

$$\vec{a} = \hat{i} - 4\hat{j} + \hat{k}, \quad \vec{b} = \lambda\hat{i} - 2\hat{j} + \hat{k}$$
 and
 $\vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k}$ are coplanar.

- (b) Find the equations of the line (both Vector and Cartesian) passing through the point (1, -1, -2) and parallel to the vector $3\hat{i} - 2\hat{j} + 5\hat{k}$.
- (c) A manufacturer makes two types of furniture, chairs and tables. Both the products are processed on three machines A_1 , A_2 and A_3 . Machine A_1 requires 3 hours for a chair and 3 hours for a table, machine A₂ requires 5 hours for a chair and 2 hours for a table and machine A₃ requires 2 hours for a chair and 6 hours for a table. The maximum time available on machines A_1 , A_2 and A_3 is 36 hours, 50 hours and 60 hours respectively. Profits are ₹ 20 per chair and ₹ 30 per table. Formulate the above as a linear programming problem to maximize the profit and solve it. 10

www.ignouassignmentguru.co

BCS-012

5

5

No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

09411

June, 2017

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks: 100

BCS-012

Note: Question number 1 is compulsory. Attempt any three questions from the remaining four questions.

1. (a) Show that

1

1

1

a² a \mathbf{b}^2 = (b - a) (c - a) (c - b).h 5

(b) Using determinants, find the area of the triangle whose vertices are (1, 2), (-2, and (-3, -4).

 c^2

the principle of mathematical (c) Use induction to prove that $+ ... + \frac{1}{n(n+1)}$ $\frac{n}{n+1}$ for every natural number n. 5

BCS-012

P.T.O.

(d) If the first term of an A.P. is 22, the common difference is -4, and the sum to n terms is 64, find n.

5

5

5

5

(e) Find the points of discontinuity of the following function :

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x}^2, & \text{if } \mathbf{x} > 0\\ \mathbf{x} + 3, & \text{if } \mathbf{x} \le 0 \end{cases}$$

(f) If $y = ax + \frac{b}{x}$, show that

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0.$$

(g) Prove that the three medians of a triangle meet at a point called centroid of the triangle which divides each of the medians in the ratio 2:1.

(h) Show that $|\dot{a}|\dot{b} + |\dot{b}|\dot{a}$ is perpendicular to $|\ddot{a}|\dot{b} - |\ddot{b}|\dot{a}$, for any two non-zero vectors \ddot{a} and \ddot{b} .

2. (a) Solve the following system of linear equations using Cramer's rule : 5

x + y = 0, y + z = 1, z + x = 3
WWW(b) If A =
$$\begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}$$
, B = $\begin{bmatrix} a \\ b \\ -1 \end{bmatrix}$ und COM
(A + B)² = A² + B², find a and b. 5

BCS-012

(c)

Reduce the matrix

$$\mathbf{A} = \begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

to normal form and hence find its rank.

- (d) Show that n(n + 1) (2n + 1) is a multiple of
 6 for every natural number n.
- 3. (a) Find the sum of an infinite G.P. whose first term is 28 and fourth term is $\frac{4}{40}$.
 - (b) Use De Moivre's theorem to find $(\sqrt{3} + i)^3$.
 - (c) If 1, ω , ω^2 are cube roots of unity, show that

$$(2-\omega)(2-\omega^2)(2-\omega^{10})(2-\omega^{11}) = 49.$$

(d) Solve the equation

 $2x^3 - 15x^2 + 37x - 30 = 0,$

given that the roots of the equation are in A.P._____

4. (a) A young child is flying a kite which is at a height of 50 m. The wind is carrying the kite horizontally away from the child at a speed of 6.5 m/s. How fast must the kite string be let out when the string is 130 m?

BCS-012

P.T.O.

5

5.

5

(b) Using first derivative test, find the local maxima and minima of the function

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 12\mathbf{x}.$$

(c) Evaluate the integral

$$I = \int \frac{x^2}{(x+1)^3} dx.$$

(d) Find the length of the curve

$$y = 3 + \frac{1}{2}(x)$$
 from (0, 3) to (2, 4).

- 5. (a) $\overrightarrow{\text{If } a}$, $\overrightarrow{\text{b}}$, $\overrightarrow{\text{c}}$ are coplanar, then prove that $\overrightarrow{\text{a}}$ + $\overrightarrow{\text{b}}$, $\overrightarrow{\text{b}}$ + $\overrightarrow{\text{c}}$ and $\overrightarrow{\text{c}}$ + $\overrightarrow{\text{a}}$ are also coplanar.
 - (b) Find the Vector and Cartesian equations of the line passing through the points (-2, 0, 3) and (3, 5, -2).
 - Best Gift Packs company manufactures (c) two types of gift packs, type A and type B. Type A requires 5 minutes each for cutting and 10 minutes each for assembling it. Type B requires 8 minutes each for cutting and 8 minutes each for assembling. There are at most 200 minutes available for cutting and at most 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹ 25 each for type B. How many gift packs of each type should the manufacture order company in to maximise the profit?

BCS-012

6,000

10

5

5

No. of Printed Pages: 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

10403

December, 2017

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

BCS-012

Note : Question number 1 is **compulsory**. Attempt any **three** questions from the rest.

1. (a) Show that

a + b $\mathbf{b} + \mathbf{c}$ c + ah С a + b b + c $\mathbf{c} + \mathbf{a}$ = 2 b 5 8 С $\mathbf{a} + \mathbf{b}$ $\mathbf{b} + \mathbf{c}$ c + a 2 3 (b) Let A =and $f(x) = x^2 - 4x + 7$. - 1 Show that $f(A) = O_{2\times 2}$. Use this result to find A^5 . 5 (c) Find the sum up to n terms of the series

 $0.4 + 0.44 + 0.444 + \dots$

BCS-012

P.T.O.

(d) If 1, ω , ω^2 are cube roots of unity, show that $(1 + \omega) (1 + \omega^2) (1 + \omega^3) (1 + \omega^4) (1 + \omega^6)$ $(1 + \omega^8) = 4.$

(e) If
$$y = ae^{mx} + be^{-mx} + 4$$
, show that $d^2y = a^2 + be^{-mx} + 4$

$$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2} = \mathrm{m}^2(\mathrm{y}-4).$$
 5

5

5

(f) A spherical balloon is being inflated at the rate of 900 cubic centimetres per second.
 How fast is the radius of the balloon increasing when the radius is 25 cm ?

(g) Find the value of
$$\lambda$$
 for which the vectors
 $\vec{a} = 2\hat{i} - 4\hat{j} + 3\hat{k}, \vec{b} = \lambda\hat{i} - 2\hat{j} + \hat{k},$
 $\vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k}$ are co-planar.

 $\frac{x-5}{2} = \frac{y-3}{3} = \frac{z-1}{-3} \text{ and}$ +91 $\frac{x}{3} = \frac{y-1}{2} = \frac{z+5}{-3} \cdot 8543058$

2. (a) Solve the following system of equations by using matrix inverse : 5

$$3x + 4y + 7z = 14$$
, $2x - y + 3z = 4$,
 $x + 2y - 3z = 0$

BCS-012

(b) Show that A = $\begin{bmatrix} 3 & 4 & -5 \\ 2 & 2 & 0 \\ 1 & 1 & 5 \end{bmatrix}$ is row equivalent to I₃.

(c) Use the principle of mathematical induction to prove that

$$1^3 + 2^3 + ... + n^3 = \frac{1}{4}n^2(n+1)^2$$

for every natural number n.

- (d) Find the quadratic equation with real coefficients and with the pair of roots $\frac{1}{5-\sqrt{72}}, \frac{1}{5+6\sqrt{2}}.$
- (a) How many terms of the G.P. $\sqrt{3}$, 3, $3\sqrt{3}$, add up to $120 + 40\sqrt{3}$? 5

(b) If $\left(\frac{1-i}{1+i}\right)^{10} = a + ib$, then show that a = 1and b = 0.

(c) Solve the equation $8x^3 - 14x^2 + 7x - 1 = 0$, WW 0 the roots being in G.P. MC 10101.501

(d) Solve the inequality $\left|\frac{x-4}{2}\right| \le \frac{5}{12}$ and graph the solution set.

BCS-012

3.

5 P.T.O.

5

5

4. (a) Determine the values of x for which the following function is increasing and for which it is decreasing:

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$$

5

5

- (b) Show that $f(x) = 1 + x^2 ln(\frac{1}{x})$ has a local maximum at $x = \frac{1}{\sqrt{e}}$, (x > 0). 5
- (c) Evaluate the integral

$$\frac{\mathrm{dx}}{1+3\mathrm{e}^{\mathrm{x}}+2\mathrm{e}^{2\mathrm{x}}}$$

(d) Find the length of the curve $y = \frac{2}{3} x^{3/2}$ from (0, 0) to $\left(1, \frac{2}{3}\right)$.

5. (a)

Check the continuity of a function f at x = 0: 5

$$+91 \stackrel{\text{f(x)}=}{=} \begin{cases} \frac{2|x|}{x}; & x \neq 0 \\ 0; & x = 0 \end{cases} 854308$$

(b) Find the Vector and Cartesian equations of the line passing through the point (1, -1, -2) and parallel to the vector $3\hat{i} - 2\hat{j} + 5\hat{k}$. 5

BCS-012

- (c) Find the shortest distance between the lines $\vec{r} = (3\hat{i} + 4\hat{j} - 2\hat{k}) + t(-\hat{i} + 2\hat{j} + \hat{k}) \text{ and}$ $\vec{r} = (\hat{i} - 7\hat{j} - 2\hat{k}) + t(\hat{i} + 3\hat{j} + 2\hat{k}).$ 5
- (d) Find the maximum value of 5x + 2y subject to the constraints

$$-2x - 3y \le -6$$
$$x - 2y \le 2$$
$$6x + 4x \le 24$$

 $-3x + 2y \le 3$ $x \ge 0, y \ge 0$

Assignment GURU +91-9811854308 www.ignouassignmentguru.com

No. of Printed Pages : 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination June, 2018

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1.	(a)	Show that							
	•	$\begin{vmatrix} 1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1 \end{vmatrix} = (a^{3} - 1)^{2} \qquad 5$							
		$\begin{bmatrix} 1 & 2 & 5 \end{bmatrix}$							
(b) Find the inverse of $A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$. 5									
+91-9811854308									
(c) Find the sum up to n terms of the series									
(d) If 1, ω , ω^2 are the cube roots of unity, show									
that $(1 + \omega + \omega^2)^5 + (1 - \omega + \omega^2)^5 +$									

 $(1 + \omega - \omega^2)^5 = 32$ 5

BCS-012

1

P.T.O.

(e) If
$$y = 1 + ln (x + \sqrt{x^2 + 1})$$
, prove that
 $(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0.$ 5

- (f) A stone is thrown into a lake producing a circular ripple. The radius of the ripple is increasing at the rate of 5 m/s. How fast is the area inside the ripple increasing when the radius is 10 m ?
 - Find the value of λ for which the vectors $\overrightarrow{a} = \overrightarrow{i} - 4\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \lambda \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{c} = 2\overrightarrow{i} + 3\overrightarrow{j} + 3\overrightarrow{k}$ are coplanar.
- (h) Find the angle between the lines $\vec{r} = 2\hat{i} + 3\hat{j} - 4\hat{k} + t(\hat{i} - 2\hat{j} + 2\hat{k})$ $\vec{r} = 3\hat{i} - 5\hat{k} + s(3\hat{i} - 2\hat{j} + 6\hat{k}).$ 5
- 2. (a) Solve the following system of equations by the matrix method : 2x - y + 3z = 5, 3x + 2y - z = 7, 4x + 5y - 5z = 9. 5

 $= \begin{vmatrix} 3 & 4 & -5 \\ 3 & 3 & 0 \end{vmatrix}$ Show that is row (b) 1

equivalent to I₃.

BCS-012

(**g**)

2

5

5

(c) Use the principle of mathematical induction to show that

$$1 + 4 + 7 + ... + (3n - 2) = \frac{1}{2}n(3n - 1).$$
 5

(d) Find the quadratic equations with real coefficients and with the following pair of roots: $\frac{m-n}{m+n}$, $-\frac{m+n}{m-n}$

(a) Evaluate :

3.

$$\lim_{\mathbf{x}\to 0} \frac{\sqrt{1+2\mathbf{x}} - \sqrt{1-2\mathbf{x}}}{\mathbf{x}}$$

(b) If $(x + iy)^{1/3} = a + ib$, prove that

$$\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$$

(c) Solve the equation

$$2x^3 - 15x^4 + 37x - 30 = 0,$$

if the roots of the equation are in A.P.

- (d) Draw the graph of the solution set of the following inequalities : 5 $2x + y \ge 8$, $x + 2y \ge 8$ and $x + y \le 6$.
- 4. (a) Determine the values of x for which the following function is increasing and for which it is decreasing :

$$f(x) = (x - 1) (x - 2)^2$$

BCS-012

P.T.O.

5

5

5

5

(b) Find the absolute maximum and minimum of the following function :

$$f(x) = \frac{x^3}{x+2}$$
 on [-1, 1]. 5

- (c) Find the length of the curve $y = 2x^{3/2}$ from the point (1, 2) to (4, 16).
- (d) Evaluate the integral

$$\int \frac{(x+1)^2}{(x-1)^2} dx$$

5. (a) If $\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$, verify that $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{c}$.

- (b) Find the vector and Cartesian equations of the line passing through the points (-2, 0, 3) and (3, 5, -2).
- (c) Reduce the matrix

 $A = \begin{bmatrix} v & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ 8543 to its normal form and hence determine its rank.

Find the direction cosines of the line passing through the two points (1, 2, 3) and (-1, 1, 0).

BCS-012

(d)

8,000

5

5

5

5

No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

INADZ

December, 2018

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks: 100

BCS-012

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

Attempt all parts : 1.

(a) Show that

(a) Show that $+91\begin{vmatrix} b-c & c-a & a-b \\ c-a & a-b & b-c = 0.430 \\ a-b & b-c & c-a \end{vmatrix}$

WW(b)/ If $A \in \begin{pmatrix} 1 & -2 \\ 2 & -2 \\ 1 &$ find $(A - I_2)^2$. 5

Show that 7 divides $2^{3n} - 1 \forall n \in \mathbb{N}$. (c) 5 **BCS-012** P.T.O. (d) If 7 times the 7th term of an A.P. is equal to 11 times the 11th term of the A.P., find its 18th term.

(e) If 1,
$$\omega$$
, ω^2 are the cube roots of unity, find
 $(2 + \omega + \omega^2)^6 + (3 + \omega + \omega^2)^6$. 5

5

5

5

5

5

t

(f) If
$$\alpha$$
, β are roots of $x^2 - 2kx + k^2 - 1 = 0$, and
 $\alpha^2 + \beta^2 = 10$, find k.

(g) If
$$y = (x + \sqrt{x^2 + 1})^3$$
, find $\frac{dy}{dx}$

$$x\sqrt{3-2x} dx$$

2. (a) If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix}$$
, show that
+ 9 A(adj A) = 0.
(b) If $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 5 & 2 \\ 2 & -1 & 7 \end{bmatrix}$, show that A is row

equivalent to I₃.

BCS-012

(c) Solve the following system of linear equations by using matrix inverse :

$$3x + 4y + 7z = -2$$

 $2x - y + 3z = 6$
 $2x + 2y - 3z = 0$

and hence, obtain the value of 3x - 2y + z. 10

3. (a) Find the sum of first all integers between100 and 1000 which are divisible by 7.

(b) Use De Moivre's theorem to find $(i + \sqrt{3})^3$.

(c) Solve:

 $32x^3 - 48x^2 + 22x - 3 = 0,$

given the roots are in A.P.

(d) Solve:

$$\frac{2x-5}{x+2} < 5, x \in \mathbb{R}$$

4. (a) Find the points of local maxima and local minima of

f(x) = $x^3 - 6x^2 + 9x + 100$. (b) Evaluate : 5

$$\int \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}}+1}$$

BCS-012

5

5

(c) Find the area lying between two curves y = 3 + 2x, y = 3 - x, $0 \le x \le 3$, using integration.

5. (a) If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, show that
 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

(b) Check if the lines

$\frac{x-1}{4}$		$\frac{y-3}{4}$	-	$\frac{z+2}{-5}$	and
$\frac{x-8}{7}$	5	$\frac{y-4}{1}$	Ē	$\frac{z-5}{3}$	۱r

intersect or not.

(c) Perky Owl takes up designing and photography jobs. Designing job fetches the company ₹ 2000/hr and photography fetches them ₹ 1500/hr. The company can devote at most 20 hours per day to designing and at most 15 hours to photography. If total hours available for a day is at most 30, find the maximum revenue Perky Owl can get per day. 10

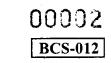
12,000

5

5

5

No. of Printed Pages : 4



BACHELOR OF COMPUTER APPLICATION

(BCA) (REVISED)

Term-End Examination, 2019

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours]

[Maximum Marks: 100

Note: Question No.1 is compulsory. Attempt any three questions from the remaining questions.

1. Attempt all parts :

1 1

(a) Show that : [5]

$$\begin{vmatrix} ab & (a+b)c \\ ca & (c+a)b \\ bc & (b+c)a \end{vmatrix} = 0$$

+ 9, 1
$$_{\text{If}} A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
 1 and 5 $_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find

(c) Show that 8 divides $3^{2n} - 1 \neq n \in \mathbb{N}$. [5]

BCS-012

[P.T.O.]

(d) If a, b, c are pth, qth and rth term of an A.P.
respectively, show that : [5]

$$(q - r) a + (r - p) b + (p-q)c = 0$$

(e) If 1, w, w² are cube roots of unity, find : [5]
 $(1 + w + 3w^2)^6 + (1 + 2w + 2w^2)^6$
(f) If α , β are roots of $x^2 - 4ax + 4a^2 - 9 = 0$
and $\alpha^2 + \beta^2 = 26$, find a. [5]
(g) If $y = ln(x + \sqrt{x^2 + 1})$, find $\frac{dy}{dx}$. [5]
(h) Evaluate $\int \sqrt{x}(3 + 2x) dx$. [5]

2. (a) If
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & -2 & 1 \end{pmatrix}$$
, show that A (adj A) =0. [5]
(1 -1 2)

(b)
$$G_{If} A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 54 & 7 \\ 3 & 2 & 1 \end{pmatrix}$$
, show that A is row COM

equivalent to I_3 . [5]

BCS-012

(2)

(c) If
$$A = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}$$
 and

$$B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
, show that $AB = 6I_3$. Use it

to solve the system of linear equations : [10]

x-y=1

2x + 3y + 4z = 7

y + 2z = 1

3. (a)Find the sum of all the integers between 100 and
700 which are divisible by 8. [5]

- (b) Use DeMoivre's theorem to obtain $(1 + i)^8$ [5]
- (c) Solve $x^3 9x^2 + 23x 15 = 0$, two of the roots are in the ratio 3 : 5. [5]

WWW.
$$i_{(d)}$$
 Osolve $\frac{3x-1}{x+2}$ $3, x \in \mathbb{R}$ ntguru. $c_{[5]}$ m

4. (a) Determine the interval in $f(x) = e^{\frac{1}{x}}$, $x \neq 0$, is decreasing. [5]

BCS-012

(3)

(b) Evaluate
$$\int \frac{e^{2x}}{e^x + 1} dx$$
 [5]

(c) Find the area bounded by $y = \sqrt{x}$ and y = x.[5]

(d) Using integration find the length of y = 3 + x from (1, 4) to (3, 6). [5]

5.

(a)

Show that :

$$\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2\begin{bmatrix} \vec{a} \ \vec{b} & \vec{c} \end{bmatrix}$$

(b) Find shortest distance between

$$i = i - j + t(2i + k)$$
 and

$$\vec{r} = 2\hat{i} - \hat{j} + s(\hat{i} + \hat{j} - \hat{k})$$
 [5]

BCS-012

(4)

8000

[5]

No. of Printed Pages : 4

13994

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination, 2019

BCS-012 : BASIC MATHEMATICS

Time: 3 Hours]

1.

[Maximum Marks : 100

Note : Question no.1 is compulsory. Attempt any three questions from remaining four questions.

a) Show that :
$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
 [5]

Using determinants, find the area of the triangle whose vertices are (2,1), (3, -2) and (-4, -3). [5]

(c) Use mathematical induction to show that $1+3+5+\dots+(2n-1) = n^2 \forall n \in \mathbb{N}$ (d) If α, β are roots of $x^2 - 3ax + a^2 = 0$, find a if $\alpha^2 + \beta^2 = \frac{1}{7}$. [5]

BCS-012/15000

(b)

- (e) If 1, w, w² are cube roots of unity, find the value of : $(2+w)(2+w^2)(2+w^{22})(2+w^{26})$ [5]
- (f) If 9th term of an A.P. is 25 and 17th term of the
 A.P. is 41, find its 20th term. [5]

(g) If
$$y = 3xe^{-x}$$
, find $\frac{d^2y}{dx^2}$ [5]

[5]

(h) Evaluate
$$\int x\sqrt{2x+3} dx$$
.

(a) If
$$A = \begin{bmatrix} 0 & 3 & -1 \\ 2 & 1 & 3 \\ -1 & 0 & 0 \end{bmatrix}$$
, show that $A(adjA) = |A|I_3$. [5]

(b) If A= $\begin{pmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, show that A is equivalent to I₃. +91-98118543[5]8

(c) If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, show that $A^2 - 4A + I = O$, where I CON and O are identity and null matrix respectively of

BCS-012/15000

2

(2)

 (d) Use principle of mathematical induction to show that 2³ⁿ-1 is divisible by 7. [5]

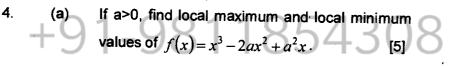
(b) Solve the equation :

3.

 $x^3 - 13x^2 + 15x + 189 = 0$ if one root of the equation exceeds other by 2.

(c) Solve the inequality :
$$\left|\frac{2x-3}{4}\right| \le \frac{2}{3}$$
 [5]

) If
$$y = ln \left[e^x \left(\frac{x-1}{x+1} \right)^{\frac{3}{2}} \right]$$
, find $\frac{dy}{dx}$. [5]



www^(b)ig Evaluate $\int \frac{dx}{3+e^{1}}$ gnmentguru^[5] con

(c) Evaluate
$$\int_{-1}^{2} \frac{x}{(x^2+1)^2} dx$$
 [5]

BCS-012/15000

(d

(3)

[P.T.O.]

[5]

- (d) Find the area bounded by the x-axis, y=3+4x and the ordinates x=1 and x=2, by using integration. [5]
- 5. (a) If the mid-points of the consecutive sides of a quadrilateral are joined, then show that the quadrilateral formed is a parallelogram. [5]

(b) If
$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = \hat{j} + \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + k$$
, find
 $(\vec{a} \times \vec{b}) \times \vec{c}$. [5]

(c) Find equation of line passing through (-1,-2,3) and perpendicular to the lines :

$$\frac{x}{1} = \frac{y}{3} = \frac{z}{2} \text{ and } \frac{x+2}{-3} = \frac{y-1}{5} = \frac{z+1}{2}$$
[5]
(d) Maximize : [5]
+91 $\frac{Z = 2x + 3y}{Subject to :}$
 $x + y \ge 1$
WW.191 $2x + y \le 4$
 $x + 2 \ y \le 4$,
 $x \ge 0, \ y \ge 0$

BCS-012/15000 (

(4)

---- X -----

No. of Printed Pages : 4

BACHELOR OF COMPUTER APPLICATION (BCA) (Revised)

Term-End Examination

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours]

[Maximum Marks : 100

BCS-012

Note: Question number 1 is compulsory. Answer any three questions from remaining four questions.

1. (a) Show that: 5 $\begin{vmatrix} b-c & c-a & a-b \\ c-a & a-b & b-c \\ a-b & b-c & c-a \end{vmatrix} = 0$ (b) If $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, show that: $A^2 - 5A + I = O$, where I and O are identity and null matrices respectively of order 2. 5 (c) Show that $3^{2n} - 1$ is divisible by 8 for each 5 $n \in \mathbb{N}$. (d) If α , β are roots of $x^2 + ax + b = 0$, find value of $\alpha^4 + \beta^4$ in terms of a, b. 5 BCS-012 / 2670 (1)

show that $xy=a^3+b^3$ 5 (f) Show that: 11 ----- 1 _____ 91 is not a prime. 5 (g) If $y = 3\sin x + 4\cos x$, find $\frac{d^2y}{dr^2}$. 5 (h) Evaluate $\int xe^x dx$. 5 (a) If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, where $i^2 = -1$, 2. show that $(A+B)^2 = A^2 + B^2$. 5 +9 (b) If $A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that $A^2 = A^{-1}$. 5 www.ignouassignmentguru.con (c) If $A = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$ find AB and 5 BA ·

(e) If x = a + b, $y = aw + bw^2$ and $z = aw^2 + bw$,

(d) Use principle of Mathematical induction to show that:

$$\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} < 1 \quad \forall n \in \mathbb{N}$$
 5

- (a) Find sum of all three digit numbers which are divisible by 7.
 5
 - (b) Use De Moivre's theorem to find $(1+\sqrt{3} i)^3$.
 - (c) Solve the inequality:

$$\frac{4}{|x-2|} > 5$$

(d) Solve the equation: $8x^3 - 14x^2 + 7x - 1 = 0$ if the roots are in G.P. 5

4. (a) If
$$y = \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}$$
, find $\frac{dy}{dx}$. 3 5

(b) Show that: 5 WWW.Ignouassignmentguru.con $f(x) = \frac{1+x+x^2}{1-x+x^2}$

is a decreasing function on the interval $(1, \infty)$.

BCS-012 / 2670

P.T.O.

5

(c) Evaluate:

$$\int \frac{\left(a^{X}+b^{X}\right)^{2}}{a^{X}b^{X}}dx$$
 5

(d) Find the area bounded by the line y = 3 + 2x, x-axis and the ordinates x = 2 and x = 3. 5

$$\begin{bmatrix} \vec{b} + \vec{c} & \vec{c} + \vec{a} & \vec{a} + \vec{b} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

(b) Show that the lines:

$$\frac{x-5}{4} = \frac{y-7}{-4} = \frac{z-3}{-5}$$
 and

$$\frac{x-8}{4} = \frac{y-4}{-4} = \frac{z-5}{8}$$
 intersect. 5

10

5

5

(4)

·X-

No. of Printed Pages : 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (B. C. A.) (Revised) Term-End Examination December, 2020 BCS-012 : BASIC MATHEMATICS

Time : 3 Hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) Show that :

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$$
(b) Use the principle of mathematical

(b) Use the principle of mathematical induction to prove : 5

 $\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \dots + \frac{1}{(n)(n+1)} = \frac{n}{n+1},$ where *n* is a natural number.

(c) Find the sum of n terms, for the series given below : 5

Lot-I

P. T. O.

- [2]
- (d) Evaluate :

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-2x}}{x}$$

(e) Evaluate :

$$\int \frac{dx}{\sqrt{x} + x}$$

(f) If
$$y = ax + \frac{b}{x}$$
, show that :

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$$

(g) If 1, ω and ω^2 are the cube roots of unity, show that : 5

$$(1+\omega+\omega^2)^5 + (1-\omega+\omega^2)^5 + (1+\omega-\omega^2)^5 = 32.$$

(h) Find the value of λ for which the vectors $\vec{a} = \hat{i} - 4\hat{j} + \hat{k}; \qquad \vec{b} = \lambda \hat{i} - 2\hat{j} + \hat{k} \qquad \text{and}$ $\vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k}$ are coplanar. 5

2. (a) Solve the following system of equations, using Cramer's rule : 5 x+2y+2z=3;3x-2y+z=4;

(b) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, show that $A^2 - 4A - 5I_3 = 0$.

Hence find A^{-1} and A^3 . 10

 $\mathbf{5}$

 $\mathbf{5}$

 $\mathbf{5}$

BCS-012

(c) If
$$A = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$$
, show that A is row

equivalent to I₃.

3. (a) Solve the equation
$$2x^3 - 15x^2 + 37x - 30 = 0$$
,
given that the roots of the equation are in
A. P. 5

- (b) If 1, ω and ω^2 are cube roots of unity, show that $(2-\omega)(2-\omega^2)(2-\omega^{10})(2-\omega^{11}) = 49$.
- (c) Use De-Moivre's theorem to find $\left(\sqrt{3}+i\right)^{5}.5$
- (d) Find the sum of an infinite G. P., whose first term is 28 and fourth term is $\frac{4}{49}$. 5
- 4. (a) Determine the values of x for which the following function is increasing and decreasing : 5 $f(x) = (x-1)(x-2)^2$
 - (b) Find the length of the curve $y = 2x^{3/2}$ from the point (1, 2) to (4, 16). 5

P. T. O.

(c) If
$$\vec{a} + \vec{b} + \vec{c} = 10$$
, show that :

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$
.

(d) Solve :

$$\frac{2x-5}{x+2} < 5, \ x \in \mathbb{R}$$
.

- 5. (a) A man wishes to invest at most ₹ 12,000 in Bond-A and Bond-B. He must invest at least ₹ 2,000 in Bond-A and at least ₹ 4,000 in Bond-B. If Bond-A gives return of 8% and Bond-B gives return of 10%, determine how much money, should be invested in the two bonds to maximize the returns. 10
 - (b) Find the points of local maxima and local minima of the function f (x), given below :

$+91_{f(x)=x^{3}-6x^{2}+9x+100.}^{-981}$

(c) Show that 7 divides $2^{3n}-1$, $\forall n \in \mathbb{N}$ i. e. set of natural numbers, using mathematical induction. 5

BCS-012

[4]

 $\mathbf{5}$

 $\mathbf{5}$

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

June, 2021

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) If
$$A = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}$$
; $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and
 $(A + B)^2 = A^2 + B^2$, find a and b. 5
(b) If the first term of an AP is 22, the common difference is -4, and the sum to n terms is 64, find n. 5
(c) Find the angle between the lines
 $\vec{r_1} = 2\hat{i} + 3\hat{j} - 4\hat{k} + t(\hat{i} - 2\hat{j} + 2\hat{k})$
 $\vec{r_2} = 3\hat{i} - 5\hat{k} + s(3\hat{i} - 2\hat{j} + 6\hat{k})$. 5

(d) If
$$\alpha$$
, β are roots of $x^2 - 2kx + k^2 - 1 = 0$, and
 $\alpha^2 + \beta^2 = 10$, find k.

BCS-012

(e) If
$$y = 1 + ln (x + \sqrt{x^2 + 1})$$
, prove that
 $(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0.$ 5

(f) Find the points of discontinuity of the following function :

5

5

5

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x}^2, & \mathbf{x} > \mathbf{0} \\ \mathbf{x} + \mathbf{3}, & \mathbf{x} \le \mathbf{0} \end{cases}$$

(g) Solve the inequality $\frac{5}{|x-3|} < 7$.

(h) Evaluate the integral

$$I = \int \frac{x^2}{(1+x)^3} dx.$$

2. (a) Use the principle of mathematical induction to show that $2 + 2^2 + ... + 2^n = 2^{n+1} - 2$ for each natural number n. 5

(b) Using determinant, find the area of the triangle whose vertices are (1, 2); (-2, 3) and (-3, -4). 5

(c) Draw the graph of the solution set for the following inequalities :

$$2x + y \ge 8$$
, $x + 2y \ge 8$ and $x + y \le 6$ 5

(d) Use De Moivre's theorem to find $(i + \sqrt{3})^3$. 5

BCS-012

Find the absolute maximum and minimum 3. (a) of the following function :

$$f(x) = \frac{x^3}{x+2}$$
 on $[-1, 1]$

(b) Reduce the matrix A =
$$\begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 to

normal form and hence find its rank.

(c) If
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$
; $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ and
 $\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$; verify that
 $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{c}$.

$$+91\left(\frac{m-n}{m+n}\right)\left(\frac{m+n}{m-n}\right)854308$$

(b) If x = a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$ (where ω is a cube root of unity and $\omega \neq 1$), show that xyz = $a^3 + b^3$. WWV iru.çor

$$x + y = 0; y + z = 1; z + x = 3$$

BCS-012

4

5

5

5

5

5

3

(d) If
$$y = ln \left[e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right]$$
, find $\frac{dy}{dx}$. 5

5. (a) A software development company took the designing and development job of a website. The designing job fetches the company ₹ 2,000 per hour and development job fetches them ₹ 1,500 per hour. The company can devote at most 20 hours per day for designing and atmost 15 hours for development of website. If total hours available for a day is at most 30, find the maximum revenue the software company can get per day.

(b) Evaluate
$$\int x \sqrt{3-2x} dx.$$
 5

10

5

(c) Find the vector and Cartesian equations of the line passing through the points (-2, 0, 3) and (3, 5, -2).

+91-9811854308

www.ignouassignmentguru.com

	BCS-012			[2]	BCS-012	
No. of Printed Pages : 6		(c)	If z is	a complex	number	such
			that $ z $ –	-2i = z+2i ,	show	that
			Im(z) = 0.			5
BACHELOR OF	COMPUTER					
APPLICATIONS (B	(d)	(d) Show that $ \vec{a} \vec{b} + \vec{b} \vec{a}$ is perpendicula			lar to	
Term-End Exa	mination		$\begin{vmatrix} \vec{a} & \vec{b} - ec{b} \end{vmatrix} \stackrel{\overrightarrow{a}}{a},$	for any two no	n-zero vect	ors $a \rightarrow a$
December	, 2021		and \overrightarrow{b} .			-
BCS-012 : BASIC M	ATHEMATICS	O				5
Time : 3 Hours	Maximum Marks : 100	(e)		principle of	i mathem	atical
			induction to	show that :		5
Note: Question number 1 is compulsory. Attempt $1+4+7+\ldots+(3k-2)=\frac{1}{2}k(3k-1)$					- 1)	
any three questions	any three questions from the remaining					
questions.		GUR®	Evaluate ∫-	$\frac{dx}{e^x+1}$.		5
1. (a) Find the inverse of m	natrix : 5		Find the q	uadratic equat	tion whose	roots
[1 2	2 5] +9 -	9811854	are $(2 - \sqrt{3})$	and $(2 + \sqrt{3})$.		5
$\mathbf{A} = \begin{bmatrix} 1 & 2\\ 2 & 3\\ 1 & 1 \end{bmatrix}$	3 1	(b)	Find the lon	orth of the aum	· · ·	
	www.ignou	uassignmentgu	ITU.COT		е.	
	erm of an A.P. is equal		Ĵ	$y = 3 + \frac{1}{2}(x)$		
	a term of the A.P., find		0 ()			
its 18th term.	5		from (0, 3) t	o (2, 4).		5

		[3] BCS-012	2	[4] BCS-012
2.	(a)	Find the shortest distance between : 5	5	the area inside the ripple increasing when
		$\stackrel{\rightarrow}{r_1} = (1+\lambda)\hat{i} + (2-\lambda)\hat{j} + (1+\lambda)\hat{k}$		the radius is 10 m ? 5
		\rightarrow $2(1 + 1)^{2} + (1 + 1)^{2}$	(b)	If $(x + iy)^{1/3} = a + ib$, prove that : 5
		and $\vec{r_2} = 2(1+\mu)\hat{i} + (1-\mu)\hat{j} + (-1+2\mu)\hat{k}$		$\frac{x}{a} + \frac{y}{b} = 4\left(a^2 - b^2\right)$
	(b)	Find the points of local minima and local	1	a b
		maxima, for function : 5	; (c)	Find the 10th term of the harmonic
		$f(x) = \frac{3}{4}x^4 - 8x^3 + \frac{45}{2}x^2 + 2015$	O	progression : 5
		4 2		$\frac{1}{7}, \frac{1}{15}, \frac{1}{23}, \frac{1}{31}, \dots$
	(c)	Find the sum of all integers between 100		7 15 23 31
		and 1000 which are divisible by 7. 5	ASSIGNM	For any two vectors \vec{a} and \vec{b} , show that :
	(d)	If $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 5 & 2 \\ 2 & -1 & 7 \end{bmatrix}$, show that A is row	GUR	5
		$\begin{bmatrix} 2 & -1 & 7 \end{bmatrix}$	00110E1	$\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \\ a + b \end{vmatrix} \leq \begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} + \begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix}$
		equivalent to I_3 .	-9811854	308 111
3.	(a)	A stone is thrown into a lake, producing	4. (a)	Determine the values of x for which :
0.	(a)			$f(x) = 5x^{3/2} - 3x^{5/2}, \ x \ge 0$
		circular ripple. The radius of the ripple is		
		increasing at the rate of 5 m/s. How fast is	8	is increasing and decreasing. 5

	[5]	BC	S-012	[6] BC	CS-012
(b)	Solve the followin	ng system of	liner	If project A gives return of 8% and pr	roject
	equations by using m	atrix inverse :	10	B gives return of 10%, find how	much
	3x + 4y + 7z	=-2		money is to be invested in the two pro-	ojects
	2x - y + 3z	r = 6		to maximize the return.	10
	2x + 2y - 3z	z = 0	(c)	Solve the equation :	
	and hance, obtain the	e value of $3x - 2y$ -	+ z. 2000	$2x^3 - 15x^2 + 37x - 30 = 0$	
(c)	Find the area bou	nded by the cu	urves	if roots of the equation are in A. P.	5
	$y = x^2$ and $y^2 = x$.		Assignm	ent	
5. (a)	If $y = \left(x + \sqrt{x^2 + 1}\right)^3$, find $\frac{dy}{dx}$.	5 GURI	J	
(b)	A company wishes	to invest at	nost 9811854	308	
	\$ 12,000 in projec	t A and projec	et B.		
	Company must invest		nouassignmentgu ^{00 in}	Iru.com	
	project A and at leas	t \$ 4,000 in proje	ect B. BCS-0	12	

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

June, 2022

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

- Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.
- 1. (a) Solve the following system of linear equations using Cramer's rule : 5x + y = 0; y + z = 1; z + x = 3
 - (b) If 1, ω and ω^2 are cube roots of unity, show that

$$(2 - \omega) (2 - \omega^2) (2 - \omega^{10}) (2 - \omega^{11}) = 49.$$
 5

(c) Evaluate the integral I = $\int \frac{x^2}{(x+1)^3} dx$. U.5 OM

(d) Solve the inequality
$$\frac{5}{|x-3|} < 7.$$
 5

(e) Show that
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).5$$

(f) Find the quadratic equation whose roots are
$$(2 - \sqrt{3})$$
 and $(2 + \sqrt{3})$. 5

(g) Find the sum of an Infinite G.P., whose first term is 28 and fourth term is $\frac{4}{49}$.

5

5

5

7

5

(h) If z is a complex number such that |z - 2i| = |z + 2i|, show that Im(z) = 0.

2. (a) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{x}$$

- (b) Prove that the three medians of a triangle meet at a point called centroid of the triangle which divides each of the medians in the ratio 2 : 1.
 - c) A young child is flying a kite which is at a height of 50 m. The wind is carrying the kite horizontally away from the child at a speed of 6.5 m/s. How fast must the kite string be let out when the string is 130 m?
- 3. (a) Using Principle of Mathematical Induction, show that n(n + 1) (2n + 1) is a multiple of 6 for every natural number n.

BCS-012

(b) Find the points of local minima and local maxima for

$$f(\mathbf{x}) = \frac{3}{4}\mathbf{x}^4 - 8\mathbf{x}^3 + \frac{45}{2}\mathbf{x}^2 + 2015.$$
 5

- (c) Determine the 100th term of the Harmonic Progression $\frac{1}{7}$, $\frac{1}{15}$, $\frac{1}{23}$, $\frac{1}{31}$, 5
- (d) Find the length of the curve $y = 2x^{3/2}$ from the point (1, 2) to (4, 16).
- 4. (a) Determine the shortest distance between $\overrightarrow{r_1} = (1 + \lambda) \hat{i} + (2 - \lambda) \hat{j} + (1 + \lambda) \hat{k}$ and $\overrightarrow{r_2} = 2(1 + \mu) \hat{i} + (1 - \mu) \hat{j} + (-1 + 2\mu) \hat{k}$. 5 (b) Find the area lying between two curves y = 3 + 2x, y = 3 - x, $0 \le x \le 3$,

using integration.

(c) If
$$y = 1 + ln (x + \sqrt{x^2 + 1})$$
, prove that

$$(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0.54305$$

5

5. (a) If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix}$$
, show that $A(adj A) = 0.$ 5

(b) Use De-Moivre's theorem to find
$$(\sqrt{3} + i)^3$$
. 5

(c) Show that
$$|\vec{a} | \vec{b} + | \vec{b} | \vec{a}$$
 is
perpendicular to $|\vec{a} | \vec{b} - | \vec{b} | \vec{a}$, for any
two non-zero vectors \vec{a} and \vec{b} . 5

(d) If
$$y = ln \left[e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right]$$
, find $\frac{dy}{dx}$. 5

Assignment GURU +91-9811854308

www.ignouassignmentguru.com

No. of Printed Pages : 6

BCS-012

BACHELOR OF COMPUTER

APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2022

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt

any three questions from the remaining

$$\underline{-questions.981185430}8$$

 $(A) = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}, \text{ show that A is row}$

equivalent to I_3 .

(b) Find the sum of an infinite G. P., whose

first term is 28 and fourth term is
$$\frac{4}{49}$$
. 5

(c) Solve the inequality
$$\frac{5}{|x-3|} < 7$$
. 5

(d) Evaluate
$$\int \frac{x^2}{(x+2)^3} dx$$
. 5

(e) For any vectors
$$\vec{a}$$
 and \vec{b} , show that
 $\left|\vec{a} + \vec{b}\right| \le \left|\vec{a}\right| + \left|\vec{b}\right|$. 5

(f) Find the area bounded by the curves $y = x^2$ and $y^2 = x$. Also draw graph for

(g) If z is a complex number such that (g) If z is a complex number such that |z - 2i| = |z + 2i|, show that Im (z) = 0. 15 com (h) Find the quadratic equation whose roots are $(2 - \sqrt{3})$ and $(2 + \sqrt{3})$. 5

[3]

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (y - x)(z - x)(z - y)$$

Find $(\sqrt{3} + i)^3$ by using De Moivre's (b) theorem. $\mathbf{5}$

c) If
$$y = ax + \frac{b}{x}$$
, show that :

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$$

Find the points of discontinuity of the (d) following function : 5

$$f(x) = \begin{cases} x^2 & \text{if } x > 0 \\ x + 3, & \text{if } x \le 0 \end{cases}$$

3. (a) Solve the following system of linear

equations using Cramer's rule : 5 www.ignouassig_mentguru.com

> y + z = 1z + x = 3

 $\mathbf{5}$

- (b) If the first term of an A. P. is 22, the common difference is 4, and the sum of n terms is 64, then find n.
- (c) Find the length of the curve $y = 3 + \frac{x}{2}$ from (0, 3) to (2, 4). 5

(d) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, then prove

- that $\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{c} + \overrightarrow{a}$ are also coplanar vectors. 5
- 4. (a) A child is holding string a flying kite, which is at the height of 50 m, from the ground. The wind carries away the kite horizontally, from the child, at the rate of 6.5 m/s. Determine the rate at which the kite string must be let out when the string is 130 m.

- (b) Using determinants, find the area of triangle whose vertices are (1, 2), (-2, 3) and (-3, -4).
- (c) Using the principle of mathematical induction, prove that :

$$\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

for every natural number n.

(d) Reduce the matrix $A = \begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ to

normal form and hence find its rank. 5

5. (a) Find the vector and Cartesian equations of the line passing through the points

(b) If $y = \ln \left[e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right]$, find $\frac{dy}{dx}$. 5

(c) A person wishes to invest at most `12,000 in 'option A' and 'option B'. He must invest at least ` 2,000 in 'option A' and at least ` 14,000 in 'option B'. If 'option A' gives return of 8% and 'option B' gives return of 10%, determine how much investment should be done in respective options to maximize the returns. 10

[6]

+91-9811854308 www.ignouassignmentguru.com

BCS-012